

Diabetes Mellitus: Beyond Glycemic Control to Cardiovascular Risk

Seema Sharma*, Hemant Swami

Department of Pharmaceutical Sciences, SAGE University, Indore, Madhya Pradesh, India

*Correspondence

Seema Sharma

Department of Pharmaceutical Sciences, SAGE University, Indore, Madhya Pradesh, India.

E-Mail: seemasharmapharm@gmail.com

Abstract

Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from insulin resistance, impaired insulin secretion, or both. Accumulating epidemiological and clinical evidence has established diabetes mellitus as a major determinant of cardiovascular morbidity and mortality. The concept of diabetes as a cardiovascular risk equivalent implies that individuals with diabetes, even without prior cardiovascular events, possess a cardiovascular risk comparable to non-diabetic individuals with established cardiovascular disease. This review summarizes the evidence supporting this concept, elucidates the underlying pathophysiological mechanisms linking diabetes and cardiovascular disease, and highlights the clinical implications for prevention and management. Recognition of diabetes as a cardiovascular risk equivalent emphasizes the need for early and aggressive cardiovascular risk reduction strategies.

Keywords: Diabetes mellitus, cardiovascular disease, risk equivalent, atherosclerosis, insulin resistance

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Diabetes mellitus has become one of the most significant global health challenges of the 21st century. The global prevalence of diabetes has risen sharply due to changes in lifestyle, dietary patterns, obesity, and population aging. Although diabetes was traditionally viewed as a disorder of carbohydrate metabolism, it is now well established that diabetes is a systemic disease with profound effects on the vascular system [1].

Cardiovascular disease remains the most common cause of death among diabetic individuals, accounting for nearly two-thirds of diabetes-related mortality [2]. Patients with diabetes are at increased risk of developing coronary artery disease, myocardial infarction, stroke, and peripheral arterial disease. These observations have led to the recognition of diabetes as a cardiovascular risk equivalent, fundamentally changing approaches to cardiovascular prevention in diabetic populations.

Concept of Diabetes as a Cardiovascular Risk Equivalent

A cardiovascular risk equivalent is defined as a clinical condition that confers a risk of future cardiovascular events comparable to that of individuals with established coronary artery disease or a prior myocardial infarction. The concept gained prominence following landmark studies demonstrating that individuals with type 2 diabetes without a history of myocardial infarction had a similar risk of coronary heart disease mortality as non-diabetic individuals with prior myocardial infarction [3].

This finding suggested that diabetes itself is sufficient to place individuals in a high-risk cardiovascular category. Subsequent studies and meta-analyses supported this concept, leading to its incorporation into several clinical practice guidelines [4,5]. Although cardiovascular risk varies among individuals with diabetes, the overall evidence supports treating diabetes as a condition associated with markedly elevated cardiovascular risk.

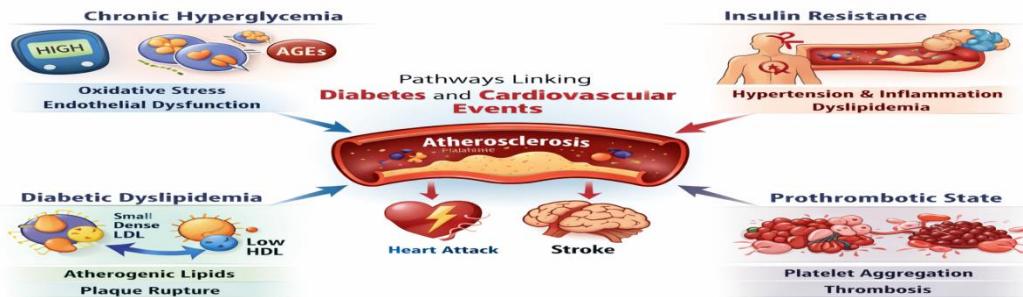
Epidemiological Evidence

Large-scale epidemiological studies consistently show that diabetes increases the risk of cardiovascular disease by

approximately two- to four-fold [6]. This elevated risk is observed across diverse populations and affects both men and women. Importantly, diabetes abolishes the natural cardioprotective advantage observed in premenopausal women, placing them at similar or higher cardiovascular risk compared with men [7].

The duration of diabetes plays a crucial role in determining cardiovascular outcomes. Longer disease duration is associated with cumulative vascular damage and increased incidence of cardiovascular events. Poor glycemic control further amplifies this risk, highlighting the importance of early diagnosis and optimal metabolic management [8].

Pathophysiological Mechanisms Linking Diabetes and Cardiovascular Disease


The strong association between diabetes mellitus and cardiovascular disease is mediated by multiple interrelated pathophysiological mechanisms. Chronic hyperglycemia, insulin resistance, dyslipidemia, inflammation, oxidative stress, and endothelial dysfunction collectively contribute to accelerated atherosclerosis and increased cardiovascular risk in diabetic individuals.

Chronic Hyperglycemia

Persistent hyperglycemia is a central pathological feature of diabetes and plays a crucial role in the development of cardiovascular complications. Elevated blood glucose levels lead to excessive generation of reactive oxygen species within vascular cells, resulting in oxidative stress. This oxidative stress damages cellular proteins, lipids, and DNA, thereby impairing normal endothelial function. Hyperglycemia also activates protein kinase C pathways, which alter vascular permeability, promote vasoconstriction, and stimulate inflammatory responses within the vessel wall. In addition, prolonged exposure to high glucose concentrations results in the formation of advanced glycation end products (AGEs). These AGEs accumulate in vascular tissues and interact with specific receptors on endothelial cells, triggering

inflammatory signaling cascades. Collectively, these mechanisms damage the vascular endothelium, reduce nitric oxide bioavailability, and promote smooth muscle cell proliferation. The

net effect is accelerated atherosclerosis, making chronic hyperglycemia a key driver of cardiovascular disease in diabetes [9,10].

Figure 1: Schematic representation of the major pathophysiological pathways linking diabetes mellitus to cardiovascular disease. Chronic hyperglycemia, insulin resistance, diabetic dyslipidemia, inflammation, and a prothrombotic state interact to promote endothelial dysfunction and accelerate atherosclerosis, ultimately leading to adverse cardiovascular outcomes such as myocardial infarction and stroke.

Insulin Resistance

Insulin resistance is a hallmark of type 2 diabetes and significantly contributes to cardiovascular disease development. When tissues become resistant to insulin, compensatory hyperinsulinemia occurs, which adversely affects multiple metabolic and vascular pathways. Insulin resistance disrupts normal lipid metabolism, promotes sodium retention, and activates the sympathetic nervous system, thereby contributing to hypertension. Furthermore, insulin resistance is closely linked with chronic low-grade inflammation. Adipose tissue in insulin-resistant states releases pro-inflammatory cytokines that further impair insulin signaling and damage vascular structures. These metabolic abnormalities act synergistically to promote endothelial dysfunction, vascular inflammation, and smooth muscle cell proliferation. As a result, insulin resistance creates a pro-atherogenic environment that significantly increases the risk of coronary artery disease and other cardiovascular complications in diabetic patients [11].

Diabetic Dyslipidemia

Diabetic dyslipidemia is a characteristic lipid abnormality commonly observed in individuals with diabetes, particularly type 2 diabetes. It is typically marked by elevated triglyceride levels, reduced high-density lipoprotein cholesterol, and an increased proportion of small dense low-density lipoprotein particles. Small dense LDL particles are especially atherogenic due to their increased susceptibility to oxidative modification and enhanced ability to penetrate the arterial wall. Once oxidized, these lipoproteins are readily taken up by macrophages, leading to foam cell formation and the development of atherosclerotic plaques. The combination of hypertriglyceridemia, low HDL cholesterol, and atherogenic LDL particles significantly accelerates plaque formation and contributes to plaque instability, increasing the risk of acute cardiovascular events such as myocardial infarction and stroke in diabetic individuals [12].

Inflammation and Oxidative Stress

Diabetes is increasingly recognized as a chronic inflammatory condition. Hyperglycemia, insulin resistance, and adipose tissue dysfunction lead to increased production of pro-inflammatory cytokines and activation of inflammatory signaling pathways. These inflammatory mediators promote endothelial activation, leukocyte adhesion, and progression of atherosclerotic lesions. Oxidative stress further exacerbates vascular injury by promoting lipid oxidation, impairing endothelial repair mechanisms, and destabilizing atherosclerotic plaques. The coexistence of inflammation and oxidative stress creates a vicious cycle that accelerates atherosclerosis and increases the likelihood of plaque rupture. Plaque instability and rupture are critical events leading to thrombosis and acute cardiovascular syndromes, highlighting the central role of inflammation and oxidative stress in diabetes-associated cardiovascular disease [13].

Endothelial Dysfunction and Prothrombotic State

Endothelial dysfunction is a key pathological consequence of diabetes and represents an early step in atherosclerosis. In diabetic individuals, endothelial cells exhibit reduced nitric oxide production, leading to impaired vasodilation and increased vascular stiffness. This dysfunction also enhances the expression of adhesion molecules, facilitating leukocyte attachment and vascular inflammation. In addition to endothelial impairment, diabetes is associated with abnormalities in coagulation and fibrinolysis. Increased platelet aggregation, elevated coagulation factors, and reduced fibrinolytic activity collectively create a prothrombotic state. This environment favors thrombus formation at sites of atherosclerotic plaque disruption. The combination of endothelial dysfunction and a prothrombotic state significantly increases the risk of acute cardiovascular events, such as myocardial infarction and stroke, in patients with diabetes [14]. Table 1

Table 1: Major mechanisms through which diabetes mellitus induces pathological vascular changes, ultimately accelerating atherosclerosis and increasing the risk of adverse cardiovascular outcomes.

Mechanism	Pathological Effect	Cardiovascular Outcome
Chronic hyperglycemia	Endothelial dysfunction, oxidative stress	Accelerated atherosclerosis
Insulin resistance	Dyslipidemia, hypertension, inflammation	Coronary artery disease
Diabetic dyslipidemia	Small dense LDL, low HDL	Plaque formation and instability
Inflammation	Cytokine release, plaque rupture	Myocardial infarction, stroke
Prothrombotic state	Platelet activation, impaired fibrinolysis	Thrombosis and vascular occlusion

Cardiovascular Complications Associated with Diabetes

Cardiovascular complications represent the most significant cause of morbidity and mortality in individuals with diabetes mellitus. Both macrovascular and microvascular complications contribute either directly or indirectly to adverse cardiovascular outcomes. The coexistence of metabolic abnormalities, chronic hyperglycemia, and vascular dysfunction in diabetes accelerates the development of these complications and worsens clinical prognosis.

Macrovascular Complications

Macrovascular complications are the primary contributors to cardiovascular mortality in diabetic patients. These complications include coronary artery disease, myocardial infarction, cerebrovascular disease, and peripheral arterial disease. Diabetes accelerates the atherosclerotic process, leading to earlier onset, greater severity, and more diffuse involvement of large blood vessels. In diabetic individuals, atherosclerotic plaques tend to be more extensive and involve multiple vascular territories simultaneously. Coronary artery disease in diabetes is often characterized by multivessel involvement and smaller vessel caliber, making revascularization procedures more complex and less successful. Furthermore, diabetic patients frequently experience silent myocardial ischemia due to autonomic neuropathy, which delays diagnosis and treatment. Cerebrovascular disease is also more common in diabetic populations, with increased risk of both ischemic stroke and transient ischemic attacks. Peripheral arterial disease occurs more frequently and progresses more rapidly in diabetes, often leading to poor wound healing, foot ulcers, and lower-limb amputations. Collectively, these macrovascular complications result in poorer cardiovascular outcomes and higher mortality rates in diabetic patients compared with non-diabetic individuals [15].

Microvascular Complications with Cardiovascular Impact

Although microvascular complications primarily affect small blood vessels, they have significant indirect effects on cardiovascular health. Diabetic nephropathy is one of the most important microvascular complications influencing cardiovascular risk. Progressive kidney damage leads to sodium retention, volume overload, and activation of the renin-angiotensin-aldosterone system, all of which contribute to hypertension and increase the risk of heart failure. Autonomic neuropathy is another microvascular complication with important cardiovascular implications. Damage to autonomic nerves impairs heart rate variability and blood pressure regulation, increasing the risk of arrhythmias, orthostatic hypotension, and sudden cardiac death. Autonomic dysfunction may also mask symptoms of myocardial ischemia, resulting in silent myocardial infarction and delayed medical intervention. Thus, microvascular complications not only reflect the severity of diabetes-related vascular damage but also actively contribute to increased cardiovascular morbidity and mortality in diabetic individuals [16].

Clinical and Therapeutic Implications

Recognizing diabetes as a cardiovascular risk equivalent has profound implications for clinical management. It underscores the need for a comprehensive and aggressive approach to cardiovascular risk reduction in all diabetic patients, regardless of the presence or absence of clinically apparent cardiovascular disease. Effective management strategies focus on strict glycemic control to reduce vascular damage, along with optimal regulation of blood pressure and lipid levels. Lifestyle modifications, including dietary changes, regular physical activity, weight management, and smoking cessation, form the foundation of cardiovascular prevention. Pharmacological interventions, such as antihypertensive agents, statins, and antiplatelet therapy, are often required to achieve target risk factor levels. Importantly, cardiovascular prevention in diabetes is no longer limited to secondary prevention. Current guidelines recommend treating diabetic patients as high-risk individuals and implementing aggressive preventive strategies even in the absence of established

cardiovascular disease. This approach reflects the recognition that diabetes itself confers substantial cardiovascular risk [17-19].

Future Perspectives

Advances in diabetes pharmacotherapy have significantly reshaped the management of cardiovascular risk in diabetic patients. Recent glucose-lowering agents have demonstrated cardiovascular and renal benefits beyond glycemic control, highlighting the importance of targeting multiple pathogenic pathways simultaneously. Future research is expected to focus on identifying novel therapeutic targets related to inflammation, oxidative stress, endothelial dysfunction, and thrombosis. Improved risk stratification tools may allow clinicians to identify high-risk individuals earlier and tailor interventions more effectively. Personalized medicine approaches integrating genetic, metabolic, and clinical data hold promise for further reducing cardiovascular morbidity and mortality in diabetic populations [20,21].

Conclusion

Diabetes mellitus is a major cardiovascular condition rather than merely a disorder of glucose metabolism. Strong epidemiological evidence and well-established pathophysiological mechanisms support the concept of diabetes as a cardiovascular risk equivalent. Both macrovascular and microvascular complications contribute significantly to cardiovascular morbidity and mortality in diabetic patients. Early identification of cardiovascular risk and aggressive, multifactorial management strategies are essential to improve long-term outcomes. Recognizing and addressing the cardiovascular burden of diabetes remains a critical priority in reducing global disease burden and improving patient survival.

Reference

1. International Diabetes Federation. (2019). *IDF diabetes atlas* (9th ed.). International Diabetes Federation.
2. Morish, N. J., Wang, S. L., Stevens, L. K., Fuller, J. H., & Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. *Diabetologia*, 2001;44(Suppl 2):S14-S21. <https://doi.org/10.1007/PL00002934>
3. Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. *The New England Journal of Medicine*, 1998;339(4): 229-234. <https://doi.org/10.1056/NEJM199807233390404>
4. Grundy, S. M., Benjamin, I. J., Burke, G. L., Chait, A., Eckel, R. H., Howard, B. V., Mitch, W., Smith, S. C., & Sowers, J. R. Diabetes and cardiovascular disease: A statement for healthcare professionals from the American Heart Association. *Circulation*, 1999;100(10), 1134-1146. <https://doi.org/10.1161/01.CIR.100.10.1134>
5. Bulugahapitiya, U., Siyambalapitiya, S., Sithole, J., & Idris, I. Is diabetes a coronary risk equivalent? A systematic review and meta-analysis. *Diabetic Medicine*, 2009;26(2):142-148. <https://doi.org/10.1111/j.1464-5491.2008.02640.x>
6. Fox, C. S., Coady, S., Sorlie, P. D., Levy, D., Meigs, J. B., D'Agostino, R. B., Wilson, P. W. F., & Savage, P. J. Increasing cardiovascular disease burden due to diabetes mellitus: The Framingham Heart Study. *Circulation*, 2007;115(12): 1544-1550. <https://doi.org/10.1161/CIRCULATIONAHA.106.658948>
7. Huxley, R., Barzi, F., & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: Meta-analysis of 37 prospective cohort studies. *BMJ*, 2006;332(7533): 73-78. <https://doi.org/10.1136/bmj.38678.389583.7C>
8. Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., & Holman, R. R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35). *BMJ*, 2000;321(7258): 405-412.

9. <https://doi.org/10.1136/bmj.321.7258.405>
 Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. *Diabetes*, 2005;54(6):1615–1625. <https://doi.org/10.2337/diabetes.54.6.1615>

10. Giacco, F., & Brownlee, M. Oxidative stress and diabetic complications. *Circulation Research*, 2010;107(9): 1058–1070. <https://doi.org/10.1161/CIRCRESAHA.110.223545>

11. Reaven, G. M. Role of insulin resistance in human disease. *Diabetes*, 1988;37(12): 1595–1607. <https://doi.org/10.2337/diab.37.12.1595>

12. Goldberg, I. J. Diabetic dyslipidemia: Causes and consequences. *Diabetes Care*, 2001;24(6): 1001–1006. <https://doi.org/10.2337/diacare.24.6.1001>

13. Libby, P., Ridker, P. M., & Hansson, G. K. Inflammation in atherosclerosis: From pathophysiology to practice. *Circulation*, 2009;119(8):1138–1150. <https://doi.org/10.1161/CIRCULATIONAHA.108.774471>

14. Beckman, J. A., Creager, M. A., & Libby, P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. *JAMA*, 2002;287(19): 2570–2581. <https://doi.org/10.1001/jama.287.19.2570>

15. Stamler, J., Vaccaro, O., Neaton, J. D., & Wentworth, D. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. *Diabetes Care*, 1993;16(2):434–444. <https://doi.org/10.2337/diacare.16.2.434>

16. Vinik, A. I., & Ziegler, D. Diabetic cardiovascular autonomic neuropathy. *Circulation*, 2007;115(3):387–397. <https://doi.org/10.1161/CIRCULATIONAHA.106.634949>

17. Sharma, S., Dubey, N., Singh, H., Komal, Kaur, I., & Khare, B. Investigation of anti-diabetic activity of flower extract of *Tecoma stans* (L.) Juss. ex Kunth. *BioGecko: A Journal for New Zealand Herpetology*, 2023;12(3), Article 4382.

18. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. *The Lancet*, 1998;352(9131), 837–853. [https://doi.org/10.1016/S0140-6736\(98\)07019-6](https://doi.org/10.1016/S0140-6736(98)07019-6)

19. Sharma, S., & Singh, K. Diabetes insipidus: Overview. *Asian Pacific Journal of Nursing and Health Sciences*, 2019; 2(1): 13–18.

20. American Diabetes Association. Standards of medical care in diabetes—2021. *Diabetes Care*, 2021;44(Supplement 1):S125–S150. <https://doi.org/10.2337/dc21-S010>

21. Zelniker, T. A., & Braunwald, E. (2018). Cardiac and renal effects of sodium–glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. *Circulation*, 2018;138(13): 1377–1393. <https://doi.org/10.1161/CIRCULATIONAHA.118.034618>

Conflict of Interest: Nil

Source of support: None